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Robust Visual Tracking With Multitask
Joint Dictionary Learning

Heng Fan and Jinhai Xiang

Abstract—Dictionary learning for sparse representation has
been increasingly applied to object tracking, however, the existing
methods only utilize one modality of the object to learn a
single dictionary. In this paper, we propose a robust tracking
method based on multitask joint dictionary learning. Through
extracting different features of the target, multiple linear sparse
representations are obtained. Each sparse representation can
be learned by a corresponding dictionary. Instead of separately
learning the multiple dictionaries, we adopt a multitask learning
approach to learn the multiple linear sparse representations,
which provide additional useful information to the classification
problem. Because different tasks may favor different sparse
representation coefficients, yet the joint sparsity may enforce the
robustness in coefficient estimation. During tracking, a classifier
is constructed based on a joint linear representation, and the
candidate with the smallest joint decision error is selected to
be the tracked object. In addition, reliable tracking results
and augmented training samples are accumulated into two sets
to update the dictionaries for classification, which helps our
tracker adapt to the fast time-varying object appearance. Both
qualitative and quantitative evaluations on CVPR2013 visual
tracking benchmark demonstrate that our method performs
favorably against state-of-the-art trackers.

Index Terms— Joint dictionary learning, multitask learn-
ing (MTL), sparse coding, visual tracking.

I. INTRODUCTION

ISUAL tracking is one of the most fundamental compo-
Vnents of computer vision with many applications, such
as surveillance, human—computer interaction, and robotics [1].
In order to obtain a robust adaptive tracker, numerous meth-
ods have been proposed. Despite reasonable good results
of these approaches, object tracking remains a challenge
due to appearance changes caused by occlusion, illumi-
nation, pose, and motion. To address these problems, a
wide range of appearance models have been presented [2].
Roughly speaking, these appearance models can be cat-
egorized into two types: 1) based on a discriminative
model [3], [6], [8], [9], [12], [13] and 2) based on a generative

model [4], [7], [10], [11].
Recently, sparse representation has drawn increasing atten-
tion in computer vision, such as object recognition [20], [21],
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detection [22], and classification [23], [24], because of its
capability to capture most essential information of the object
and resist noise, which are desirable for modeling a robust
appearance. Inspired by this, many sparse representation-
based trackers [5], [15]-[19], [28], [46]—[48] are proposed and
achieved good performance to some extent. They represent
the object appearance model with a dictionary learned from
just one certain feature (e.g., shape or texture or color) of the
target. In this case, the dictionary may be only discriminative
to the particular situation. For example, the dictionary learned
from texture feature may be robust to illumination variation;
however, it fails to distinguish the target in the presence of
deformation. Likewise, color feature is effective to deal with
deformation but sensitive to occlusion. Therefore, one problem
for designing a robust discriminative appearance model, which
is able to handle multiple complex scenes, is how to combine
these multiple features in an effective way.

Multitask learning (MTL) [37] has received a lot of research
interests in machine learning and computer vision. The idea
behind this paradigm is that, when the tasks to be learned
share some latent factors and are similar enough or related
in some scene, it may be advantageous to consider these
relations between tasks in the model. A large body of works
has provided evidence on the benefit of such a framework in
the problems of computer vision, such as objection recogni-
tion [38], classification [39], and visual tracking [17], [40].

In this paper, we exploit multiple features of the object
for modeling its appearance. For each modality of feature,
a corresponding discriminative dictionary can be obtained.
Instead of separately learning multiple dictionaries, a joint
way is proposed to learn these dictionaries, which is called
multitask joint dictionary learning (MJDL). By using the
term multitask, we mean that there are more than one linear
representation model, which is simultaneously estimated with
proper regularization on parameters across all the models. For
instance, given a set of training samples, we extract K different
features (e.g., color, shape, and texture) for each sample and
can obtain K different linear sparse representations. Each
linear representation can learn a dictionary. We adopt a joint
learning way to combine the K linear sparse representations,
which provide additional useful information to the classifica-
tion problem, since different tasks may favor different sparse
representation coefficients, yet the joint sparsity may enforce
the robustness in coefficient estimation. After obtaining the
dictionaries, the quality of each tracking candidate is measured
based on a joint linear representation. Fig. 1 illustrates the
proposed tracking algorithm. Considering object appearance
changes, the MJDL algorithm adaptively updates the dictio-
naries and classifier by using the tracked target in a new frame.
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candidate. After obtaining the features, a classifier based on MJDL is utilized to compute the joint decision measure of each candidate. The candidate with

the maximum joint decision measure is selected to be the tracking result.

Through the above analysis, the main contributions of this
paper can be summed up in the following three aspects.

1) First, we exploit multiple features of the object for
developing a discriminative appearance model and
propose a robust tracking method based on MIJIDL.
In this paper, through extracting multiple different fea-
tures of the target, multiple linear sparse representations
are obtained. Each sparse representation can be learned
by a corresponding dictionary. Instead of separately
learning these multiple dictionaries, we propose an MTL
strategy to learn these multiple linear sparse represen-
tations, which provide additional useful information to
differentiate the object from the background.

Second, a joint classifier is utilized to improve tracking
accuracy. In contrast to previous works, which only
rely on reconstruction error to evaluate the reliability
of candidates, we use both reconstruction errors and
classification errors of multiple modalities to evaluate
each candidate and propose a joint decision measure
to compute the probability of each candidate being the
target. Through this way, the tracking results are more
reliable.

Third, the proposed tracker achieves favorable results
with 51% in success plots and 67.8% in precision plots
based on the CVPR2013 visual tracking benchmark [1],
showing the power of MJDL.

The remainder of this paper is organized as follows.
Section II briefly reviews the related works. The details of
MJDL are given in Section III. Section IV describes the pro-
posed tracking method. Experiments are shown in Section V
and Section VI concludes this paper.

2)

3)

II. RELATED WORK

Numerous studies have been done on visual tracking. Sev-
eral classic algorithms have been presented and achieved
impressive results. In [4], the incremental visual tracking intro-
duces an online approach for efficiently learning and updat-
ing a low-dimensional principal component analysis (PCA)
subspace representation for the object. However, this PCA
subspace-based representation scheme is sensitive to partial
occlusion. Kalal ef al. [9] suggested a P-N learning algorithm
to learn effective features from both positive and negative

samples for object tracking. Kwon and Lee [10] decomposed
the appearance model into multiple basic observation models
to cover a wide range of illumination and deformation.

Owing to the strong representative power of sparse coding,
many sparse representation-based tracking methods have been
proposed. Mei and Ling [16] are the first to employ a sparse
representation to track an object. However, it only simply uti-
lizes holistic target templates to construct the dictionary ignor-
ing background information, and computes sparse coefficients
by solving ¢; minimization. No dictionary learning and sys-
tematic update strategy are adopted, which makes the tracker
sensitive to object appearance variations. Zhang et al. [19]
proposed a tracking algorithm by learning a discriminative
dictionary using both target information and background infor-
mation. Liu et al. [5] constructed a dictionary by a k-selection
approach before tracking. Although this method considers
background information in dictionary learning, the dictionary
is fixed during the whole process, therefore may not be
adaptive, and the object appearance changes. To better improve
the discriminative power, Zhong et al. [15] combined a sparsity
based on both global and local representations. Nevertheless,
the two parts are mutually independent and combined in a
heuristic way. Jia et al. [42] suggested an alignment pooling
approach to acquire global sparse representations from local
object patches. The templates are dynamically updated to
capture object appearance changes via substituting old tem-
plates with the new ones; however, no dictionary learning
is utilized in this method. Zhuang er al. [47] proposed a
tracking algorithm based on a discriminative sparse similarity
map, which is obtained via a multitask reverse sparse coding
approach with Laplacian constraint. Wang et al. [48] presented
an online nonnegative dictionary learning method for updating
the target templates, so that each learned template can capture
a distinctive aspect of the object. Wu et al. [46] presented a
structural appearance model via multiscale max pooling on
weighted local sparse codes and the online multiple instance
metric learning and applied it to visual tracking.

For sparse representation, the dictionary is very crucial.
To improve the representative and discriminative power of
the dictionary for sparse coding, varieties of dictionary learn-
ing methods are proposed. Unsupervised dictionary learning
algorithms aim to minimize the residual for reconstruction.
In particular, group features with the k-means clustering
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algorithm are employed in [31]. The K-singular value
decomposition (K-SVD) algorithm [32], [33] generalizes the
k-means clustering algorithm to learn an overcomplete dic-
tionary. A dictionary learned by these approaches can well
reconstruct the object but may not be suitable for classification.
Recently, supervised dictionary learning methods have been
presented for better classification [25], [26]. A simple yet
effective way is to learn a dictionary for each class label, which
assigns a specific label to each dictionary item. In this way, the
dictionary learned is both reconstructive and discriminative.
Jiang et al. [27] presented a discriminative dictionary learning
method for sparse coding in image classification. This method
improves both discriminative and reconstructive power of the
learned dictionary by using class labels of training data and
associating label information with each dictionary item.

The most related works to ours are [17], [28], and [40].
In [28], a discriminative dictionary learning method is pro-
posed for visual tracking, in which the discriminative power
of the dictionary is obtained by minimizing both the recon-
struction error and the classification error. Although we adopt
this strategy to learn the dictionary, the proposed tracker is
different from [28]. In this paper, we take advantages of
multiple different features of the target, which is different
from [28] where only one certain feature is utilized. With
the help of MTL, we can learn multiple dictionaries from
these features in a joint way and construct a discriminative
appearance model for robust visual tracking. Zhang et al. [17]
presented an MTL tracking framework, in which they exploits
the interdependences between particles to improve tracking
performance and overall computational complexity. In this
paper, nevertheless, we propose an MJDL method to learn
the relationship between multiple features in appearance mod-
eling. Though using MTL, our approach is different from [17]
in two aspects. First, Zhang et al. [17] applied MTL to
learning the interdependences between particles, and only one
modality of the target is utilized in this process, however,
we use MTL to learn the relationship of multiple differ-
ent features in appearance modeling. Second, we adopt a
discriminative dictionary learning algorithm for the sparse
representation, while no learning method is adopted in [17].
Mei et al. [40] proposed a similar tracking method, where
MTL is utilized to learn the underlying relationship between
multiple sparse representations of different features, while the
proposed method varies from [40] in the dictionary learning.
In [40], the templates for sparse representation are obtained
from target without learning, while, in this paper, the target
templates are learned from both foreground information and
background information. Through this way, we can develop a
more discriminative and robust appearance model.

IIT. MULTITASK JOINT DICTIONARY LEARNING
A. Problem Formulation

Assume that X = {X|,Xa,..., Xy} € RIXKXN jg 4
training set with N target and background templates, in which
each sample has K different modalities of features (e.g., color,
shape, and texture), and Y = {—1, 1} are the class labels.
Our goal is to learn multiple dictionaries, which are discrim-
inative to distinguish the target from the background. For the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 5, MAY 2017

ith sample, X; = {x!,x?,...,xK} e R®K(i = 1,2,...,N)
denotes its feature matrix, in which xf c R4 represents
the kth(k = 1,2,...,K) feature associated with the ith
sample. Note that the dimensions of the K different features
are stretched to the same in this paper in the experiments.!
For each modality of feature, a corresponding dictionary can
be learned. We use dictionary set D = {Dl,Dz, ...,DKy e
RI*LxK to represent the K dictionaries, in which each
Dt = (d},di, ..., d}) e RO*E(k = 1,2,...,K) is a single
dictionary with L items for the kth modality. Given the value
of D, each x;‘ can be reconstructed by a linear combination of
few items from the kth dictionary D¥ as

xf =DFef +et (1

where e;‘ € R? is the error vector and cf.‘ € R is the sparse
code of x;‘ and can be obtained by ¢; minimization

¢t = argmin |x* — D¥e| + 41 cl )
C

where A1 is a tradeoff parameter between reliable reconstruc-

tion and sparse regularization. After obtaining the cf.‘, it can

be directly utilized as a feature for classification as follows:

yi=r(Whef) +¢f 3)
where f (WK, cf) = chf is a linear classifier, yi.‘ =
[0,...,1,...,0]T € R™ is a label vector (m = 2 in tracking

problem), in which the nonzero index indicates the class label
of xf?, Wk ¢ R"*L ig a classification parameter, and ef‘ e R™
is the residual term. {W*} ,le can be estimated by fitting the
following least squared regression (LSR) model:

K N
. 2
argmin { F(W) := ZZ Hyfc — chf-‘ H2 4)
w k=1 i=1
where W = {W! W2, ... WK} ¢ R"*LxK j5 3 set of
classification parameters. To avoid singularity of linear sys-
tems, an additional regularization term /12||W||%v is typically
imposed in (4) and it can be rewritten as

K (N
argvrvnin F(W) = Z Z [k —wkek H; + Ao |[WHE
k=1 Li=1

(5)

From the viewpoint of MTL, problem (5) is a multitask
regression model with K x N independent LSR models.

Formulation (5), however, does not consider the reconstruc-
tion error of sparse coding, which makes D suboptimal for
classification. To combine the power of reconstruction for
classification, we improve the multitask regression model by

IFor each feature, we reshape it into a feature vector with dimension 1 x n.
For example, for the features, such as image pixels denoted by a matrix A with
size p X g, we can reshape it into a feature vector § with dimension 1 x (p x q)
by columns. For all the features with different dimensions, we stretch them
to the same by filling low-dimension feature vectors with zero vectors. For
instance, fi, fp, and f3 are different features with dimension 1 x ny, 1 x np,
and 1 x n3 respectively, where n; < np < n3. We then keep f3 unchanged
and stretch f; and f, by filling zero vectors, and we can get two new feature
vectors f/l =v[f1 1 (l)] and f/z =[f I (2)], where I(l) and 1(2) are zero vectors, and
their dimensions are 1 x (n3 —ny) and 1 x (n3 — ny), respectively. Through
this way, all the features are with the same dimension.
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imposing a sparse coding error item as in [27]. Then, (5) can
be rewritten as follows:

arg min []-"(D, wy =3 [Z {( = wyf - W3

k=1

+ﬂ||nif—cff||§}+xznwkn%}]

. 2
s.t. ¢f = argmin |xf — chH2 + Atllellr (6)
C
where ||lf.‘ — cf.‘||% is the sparse coding error and lk = [llkl,
By W17 =10,..,1,1,...,01" € RE s the ideal dis-
crlmlnative sparse code forx If ll J=1(G=12,...,L), xf‘

and the dictionary item dlj‘ share the same label, while lijj=0
means that they belong to different classes. For instance, let
D¢ = (dt, dé, d’§, d4, dls‘} € RY%5 be the dictionary for the
kth, and x represents the kth modality of the ith training
sample. If xl is in the same class with dictionary items
df, di, and d%, and different classes with d% and dk then
the ideal discriminative sparse code lk can be deﬁned as
¥ =11,1,1,0,01".

The variable u controls the contributions of the sparse cod-
ing error and the reconstruction error. Through formulation (6),
the dictionaries, which are learned in a joint way, are both
reconstructive and discriminative.

B. Optimization

To start with, we give a definition of function set
L={L", L% ..., LK}, where each £F is defined as follows:

N
LEDFWH = {1 = Wyt = WEek |2+ i — e ]2)
i=1
+ oW 3

s.t. cf-‘ = arg min fo —chni + A1llellr. 7
C

Then, (6) can be rewritten as

K
argmin {]—‘(D W) = > LD, Wk)} (8)
k=1

The objective function in (8) is a nonlinear and noncon-

vex problem, therefore, we resort to stochastic gradient

descent [26]. The gradient with respect to Wk s

Yt LEDF, WhY = (1 — 1) (Whet — y9) ()T + aWE. (9)

However, the dictionary D¥ is not explicitly defined in £*

but implicitly defined on the sparse code c . To obtain the

gradient with respect to D¥, we use the 1mplicit differentiation

algorithm on the fixed point equations as in [26]. The gradient

with respect to D¥ can be acquired via®
T

—DF§F ()" + (xk — DFek)(5)

Vpe £ (DF, Why = (10

2The details of the implicit differentiation algorithm on the fixed point
equations can be shown in [26].

1021

Algorithm 1 MJDL
Require: Training sample features X with labels Y, 11,

Aoty s M, Wi = (WHE | Dy = (DY)

1: forg=1to Q

2: for k=1to K

3: Generate training sample X;

4: fori=1to N

5: Obtain yi.‘ for xf.‘;

6: Sparse coding: compute cf.‘ according to
Equation (2);

7: Compute the active set A and variable 8¢
via Equation (11);

8: Choose learning rate 1, = min(y, nig/i);

9: Compute the gradients of W’; and D’; via
Equation (9) and (10)

10: Update Wk and Dk with
Wk = wk — 1l vwk LEDE, WE) and
Dk D" — 1g Vpr L (DX, wk)

11: end for

12: Let Wy, = WS and D} | = Df;

13: end for

14: Wi = {wg+1},§=1 and Dy y1 = {D’;H},f:l;

15: end for
Return: New W and D;

where 8¢ € RL is a vector that relies on cf.‘, yf.‘, lf.‘, DX, and Wk
with

8k = 0and 8§ = (D)D)~ VLA @5 WH

where A denotes the indices of the nonzero coefficients of all
nonzero values in D¥, and V. kﬁk (DX, WX) can be obtained
with

Ve L5 DK, W = (1 — ) (WHT (Wref —y}) + (e —1).

12)

Through this way, the gradients with respect to WX and DK
are available. We adopt the learning rate in [26], which is
min(n, nig/i), where 7 is a constant and ip = Q/10, where Q
is the number of iteration. The MJDL is shown in Algorithm 1.

C. Initialization

First, we randomly select N target and background tem-
plates, and extract K features for each sample to form X.
Then, the K-SVD algorithm [32], [33] is performed on training
samples K times to initialize the dictionary Dy = {D¥ }k |-

Given the dictionary, we calculate the sparse code cf.‘ for xl. to
form matric C¥, which contains the sparse code of all samples
for the kth modality, and then employ the ridge regression
model [34] to obtain W5 by

. 2 2

W(Ig = arg min HFk - WéCk || + 3 HWS H2 (13)
W5

where FF is the label matrix of all samples for the kth modality.

After obtaining WS, Wy can be initialized as Wg = {W(Ij} ,le.
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The solution for formulation (13) is

W = F (chHT (c(cH” + 3D (14)

where I is the identity matrix.

D. Classification

After learning the dictionaries, we can classify a test sam-
ple through multiple features. The key point is to combine
the similarity between the new sample and the training set
with the classification score from the classifier. In doing so,
we adopt the joint decision measure strategy used in [28].
For a new sample s, we extract its multiple feature matrix
X = {Xsl, x?, e xSK } and compute the corresponding sparse
codes C; = {c;, cf, e cSK}. Note that there are K modalities
of features used in this paper, and thus, the joint decision
measure can be defined as

K
p(s)=1-> 0" (15)
k=1

where ¢(s) is the joint decision measure, which represents
the probability of s belonging to object class. The more the
¢(s) is, the more probably the s is the object. p¥(s) is the joint
decision error under the kth modality and it can be obtained
via

o") = (1 o) sf —Del[* +alyf —Whe|* a16)

where s{‘r represents the average of the real kth modality of
the tracking results. Taking object appearance variations into
account, we utilize the tracking results of several latest frames
instead of just one frame to calculate the kth modality of the
tracking results. We collect the kth modalities of these latest
into a set, which is dynamic (see T* in Section IV-A), and
compute the average of the set to obtain s{‘r; ||s{‘r — chls‘||2
and ||y1§ — chls‘ | are the reconstruction error and the classi-
fication error of the kth modality, respectively, a is a tradeoff
parameter, and y’; =1[0,...,1,...,0]7 € R™ is a label vector,
in which the nonzero index indicates the corresponding class.
In this paper, m is set to 2 because there are only two classes:
target and background. Therefore, the label vector y’s‘ is fixed
to [1,0]7 (for target class) or [0, 117 (for background class).

IV. PROPOSED TRACKING METHOD
A. Tracking Formulation

Our tracker is implemented via the Bayesian framework.
Given the observation set of targets Y’ = {y1, y2,..., Y}
up to the frame ¢, where y, (z = 1,2,...,1) represents the
observation of target in frame 7, we can obtain estimation X ¢
by computing the maximum a posterior via

X, = arg max p(XiY")
X

A7)

where X, ¢ denotes the ith sample at the state of X;. The pos-
terior probability p(X;|Y") can be obtained by the Bayesian
theorem recursively via

pX YY) o pil Xo) [ p(Xi1 X - D) p (X1 1Y ™ d X,y (18)
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where p(X;|X;—1) and p(y;|X;) represent the dynamic model
and the observation model, respectively.

The dynamic model indicates the temporal correlation of
the target state between consecutive frames. We apply affine
transformation to model the target motion between two con-
secutive frames within the particle filter framework. The state
transition can be formulated as

p(Xi| X)) = N(Xi; Xi-1, ¥) (19)

where ¥ is a diagonal covariance matrix whose elements
are the variance of affine parameters. The observation model
p(y:1X;) represents the probability of the observation y; at
state X;. In this paper, the observation is designed by

Pyl X)) o< p(Xy)

where ¢ (X;) is the joint decision measure of the 7th candidate.
Through Bayesian inference, we can determine the candidate
sample with the maximum joint decision measure as the
tracking result.

To obtain the reconstruction error [|sk. — D¥¢||? in (16),
we accumulate multiple features extracted from the tracking
results into K sets {Tk}le, in which each T* is used to store
the kth features of the tracking results. For the kth modality,
the feature of the tracking result in current frame is added
to T*, while those from older frames are deleted from T*,
so that each T* has a fixed number of elements, denoted by U.
We assign each element in TX the weight w" = e’g”k, where
@* is the joint decision error under the kth modality. Note
that for each newly added element, its weight is computed for
only one time based on its joint decision error and will keep
unchangeable in the set T. s{‘r in (16) is then computed as the
weighted average of the elements in 7%, since the elements
with different reliabilities should have a different importance
on the combined sample sfr. It is worth noticing that we just
use the normalization of the weights to compute their weighted
average and do not change their weights. Thus, the weights of
elements are actually invariable and determined when they are
added into T*. Initially, each T* comprises only one element,
i.e., the selected target box, whose weight is 1.

(20)

B. Online Update

Due to the appearance variations of target, update is essen-
tial. In this paper, an effective mechanism is proposed to
update D and W periodically.

To start with, we design a set S. In each frame, after
locating the target, we randomly extract some positive and
negative samples for updating a dictionary. In this paper,
we learn the dictionary using both target information and
background information. Through this way, the dictionary
learned is much more discriminative than that learned by
only using target information. In doing so, we need to extract
both positive samples containing more target information and
negative samples containing more background information.
Therefore, the positive samples should be around the target,
and the negative samples are far away from the object. It is
worth noticing that, however, far away from the target does
not mean that the negative samples could be extracted at any
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Fig. 2. Tllustration of the update process.

positions in the frame, it is relative distance. By controlling the
distance from the tracked object, we ensure that most negative
samples contain pure background, so that they are capable of
differentiating from the target to the most extent. These sam-
ples are collected as a group, which consists of two subgroups:
1) the positive subgroup to store positive samples and 2) the
negative subgroup to store negative samples and is added into
the set S. When the set size v reaches a threshold V, we extract
multiple features from all the groups in S and apply MIDL to
update dictionaries, and empty S in the end.

However, when accumulating elements into S, the track-
ing result may contain significant noise, and thus, is not
reliable, if the optimal location of the bounding box deter-
mined by our tracker has a high reconstruction error
eS)e = (1/K)X 5, Is£ —DFek||? or a high classification
error £(s)q = (1/K)z,f:1 ||y]; —ch]§||2. In this case, we
skip this frame to avoid introducing noise into S. Two thresh-
olds t. and t; are adopted to determine whether this frame is
skipped. If £(S)re > te Or £(S)c > 1], the tracking result is not
reliable and this frame will be skipped; otherwise it will be
added into S. The update process can be shown in Fig. 2. Note
that when a frame is skipped, the kth feature of the tracking
result is not added into the set 7% as well.

So far, we have introduced the overall procedure of the
proposed tracking algorithm, as shown in Algorithm 2.

V. EXPERIMENTAL RESULTS
A. Setup

1) Parameter Setting: The proposed algorithm is imple-
mented in MATLAB on a 3.2-GHz Intel E3-1225 v3 Core
PC with 8-GB memory. Since we do not update the dic-
tionaries every frame, our implementation is very efficient.
The average frames per second is 4. In our experiment, we
select two modalities of features, i.e., histogram of oriented
gradient (HOG) feature [35] and local binary pattern (LBP)
feature [36]. Both the two features are implemented in the
VLFeat tool.’> The cell size of HOG is 8 x 8, the block
size is 16 x 16, and its number of bins is set to 9. The
parameters P and R in LBP are 8 and 1, respectively, and
the patter of LBP is uniform. The parameters of the proposed
tracker are as follows. The size of each dictionary is fixed
to 200, which comprises 100 items for positive samples and
100 items for negative samples. The number of particles in the
Bayesian framework is set to 300-800. The iteration numbers
for initialization and learning are 5 and 30, respectively.

3VLFeat is an open source library and available at http://www.vlfeat.org/.

Add the new samples to
the set §

Multltask joint dictionary
learning

Group 3

Algorithm 2 Tracking by MJDL

Require: Frames 1,2,--- ,t,---;

Initialization:

1:  Select initial target X; and sample Nt positive
samples and N~ negative samples;

2:  Extract multiple features from samples to form
X with label Y;

3:  Initialize Wy = {W}K || Dy = (DY}E |

4: Add K features of X and X to {Tk}f:1
and S respectively;

Tracking:

5:  for t =2 to the end of the sequence

6: Sample J candidates around X;_i;

7: Extract K features from each candidate
and compute the corresponding sparse codes;

8: Compute joint decision measure error for each
candidate based on Equation (15) and (16);

9: Select the candidate with smallest joint
decision measure error to be the tracking
result X;;

10: Sample N positive samples and N~
samples to form new X0}

11: Add K features of X; and X0, to {Tk},{(:1
and S respectively;

12: For each T*, if its size is greater than U, delete
the oldest element from T*:

13: If the size of set S is equal to V, update
D and W according to Algorithm 1, and then
empty set S;

14: end for

Return: Tracking results X1, X», - - -

negative

9Xl‘;

The learning rate is set to 0.2. In the initial frame, both
the numbers of positive and negative samples are 200 for
initialization and 100 for update, respectively. The sizes for
the set 7 and S are fixed to 20 and 5, respectively. The
thresholds # and 7] are both empirically set to 0.3 according
to our experiment results.

2) Data Set: We evaluate the proposed algorithm on the
CVPR2013 tracking benchmark [1], which contains the results
of 29 tracking algorithms on 50 fully annotated videos
(~26000 frames). For better evaluation and analysis of
the strength and weakness of the tracking algorithms, the
sequences are categorized according to 11 attributes, including
illumination variation, scale variation, occlusion, deformation,
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motion blur, fast motion, in-plane rotation, out-of-plane, out
of view, background clutter, and low resolution.

3) Evaluation Metric: We employ the precision plot and
the success plot defined in [1] to evaluate the robustness of
the tracking algorithms. The precision plot demonstrates the
percentage of frames whose estimated average center location
errors are within the given threshold distance to the ground
truth, in which the average center location is defined as the
average Euclidean distance between the center locations of the
tracker target and the manually labeled ground truth. The score
at the threshold 20 pixels is defined as the precision score.
Success plot shows the percentage of successful frames at the
threshold ranging from O to 1. The successful frame is defined
as the overlap score more than a fixed value, where the overlap
ratio is defined as score = (area(Rgt N R7)/area(RgT U RT))
with the groundtruth Rgr and the tracking result Ry. For fair
evaluation, the area under curve (AUC) is preferred to measure
the success ratio. The one-pass evaluation (OPE) based on the
average precision and the success rate given the groundtruth
of the first frame is used to evaluate the robustness of our
algorithm.

B. Quantitative Comparison

1) Overall Performance: Fig. 3 demonstrates the overall
comparison of the proposed tracker and top ten evaluated
tracking methods (e.g., SCM [15], Struck [41], TLD [9],
ASLA [42], CXT [43], VTS [11], VTD [10], CSK [44],
LSK [5], DFT [45], OAB [8], and LOT [30]) in terms of
precision plot and success plot. Note that SCM, Struck, TLD,
ALSA, CXT, VTS, VTD, CSK, LOT, and OAB are top ten
trackers in terms of precision plot; while SCM, Struck, TLD,
ALSA, CXT, VTS, VTD, CSK, LSK, and DFT are top ten
trackers in terms of success plot. Therefore, we compare our
tracker with 12 tracking methods. The proposed MJDL obtains
favorable results in terms of both precision plot and success
plot: the precision score of MJDL is 0.678; meanwhile, in the
success plot, our MJDL achieves the score of AUC 0.510.

2) Attribute-Based Performance: To facilitate analyzing
strength and weakness of the proposed algorithm, we further

evaluate MJDL on videos with 11 attributes. Since the AUC
score of the success plot is more accurate than that at the
representative threshold (e.g., 20 pixels) of the precision plot,
in the following, we mainly analyze MJDL based on the
success plot.

Fig. 4 shows the success plot of videos with attributes
that our method achieves favorable results, in which MJDL
ranks within top 3 on 9 out of 11 attributes. For the videos
with attributes, such as background clutter, in-plane rotation,
out-of-plane rotation, deformation, and low resolution, MJDL
ranks first among all evaluated algorithms. For the sequences
with occlusion, scale variation and illumination variation,
MIDL ranks second among the evaluated algorithms, while
SCM ranks first. Both MJDL and SCM represent the object
with sparse representation. MJDL exploits multiple features of
the object and learn multiple sparse dictionaries in a joint way,
while the SCM learns the local features from target with sparse
representation. Furthermore, both MJDL and SCM utilize the
background information to improve the discriminative power
of the dictionary. On videos with motion blur, our MJDL
is still able to locate the target, which can be attributed to
the discriminative appearance model by combining multiple
discriminative features in a joint way.

Fig. 5 shows that MJDL cannot perform well with
two attributes, such as out of view and fast motion. For out-
of-view attribute, the MJDL is not able to handle this case.
For fast motion attribute, MJDL ranks fourth, while the top
three (i.e., Struck, TLD, and CXT) track the object based on
dense sampling and search for the target in the whole frame
by sliding window, while our MJDL only relies on a simple
dynamic model based on stochastic search.

To further qualitatively analyze the performance of MJDL,
Fig. 6 shows some sampled results on the benchmark. We can
observe that MJIDL favorably performs on 38 out of 50 videos
without suffering from severe drift. Note that there exist
many challenging factors in these videos that MJDL achieves
favorable results. For example, the videos Car4, CarDark,
David, Mhyang, Singerl, Sylvester, and Trellis also have
the deformation and in- or out-of-plane rotation attributes,
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display.

therefore, making them much more challenging; furthermore,
the long videos Dogl, Doll, and Sylvester have the attributes
of scale variation, in- and out-of-plane rotations; the videos
CarDark, Crossing, Dudek, and Mhyang have the attribute
of background clutter. Nevertheless, the proposed MJDL per-
forms persistently well from beginning to the end. However,
in some videos with complex compound attributes, such as
illumination variation mixed with deformation, occlusion, fast
motion, and motion blur, our tracker easily drifts to the
background, such as Matrix (#46/100), Soccer (#98/392),
Skiing (#5/81), and Skatingl (#270/400).

Success rate

Success rate

Success rate

Success plots of OPE — out—of—plane rotation
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Success plots of OPE - scale variation (28)
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C. Qualitative

Comparison

1) Background Clutter: Fig. 7 shows the sampled exper-
imental results of sequences Deer, Football, and Footballl,
which are challenging for background clutter caused by mul-
tiple similar targets. In Deer, both the water and the furriery
background make trackers confusing, since they are similar
to the object. In Football and Footballl, the target player
is running across a field full of other players, whose outfits
and helmets highly resemble the target. We observe that
the SCM, LSK, ASLA, VTS, and VTD trackers drift to

background in Deer (e.g., #38, #50, and #70), the Struck
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Sampled results of MJDL on the benchmark. For the frame pair of each image sequence, the left-hand side image shows the first frame with the

bounding box of the target, while the right-hand side image one shows the beginning frame that suffers from severe drift. If the severe drift does not happen
in that image sequence, the right one shows the last frame with the tracking result. Best viewed on color and high-resolution display.

tracker drifts to background in Football (e.g., #278), and
the LSK, SCM, ASLA, CSK, and VTS trackers drift to
background in Footballl (e.g., #71). The TLD, CXT, and
our MJDL are able to distinguish the target from background
in the presence of multiple similar objects. The TLD tracker
can track the object by detection the object in whole frame,
and the CXT is able to use context information to differentiate
the object from background. The proposed MJDL locates
the target with two strategies. First, our MJDL focuses on
both discriminative and reconstructive power of the dictionary
in appearance modeling. In this paper, the tracking task is
also considered as a binary classification problem. Apart
from reconstruction error, classification error is considered.
Through this way, the proposed algorithm learns a sparse
dictionary and a linear classifier simultaneously, which is
able to represent the object well and differentiate the target
from multiple similar background objects. Second, we exploit
multiple features of the target in its appearance modeling. For
multiple similar objects, certain features of them might be

close to each other separately, such as color feature, texture
feature, and shape feature, and it is difficult to use single
one of them to distinguish the tracked target from multiple
similar objects. Thus, we combine these multiple features of
the object and develop a discriminative appearance model.
In this method, we construct a multiple feature collaborative
appearance model for tracking, which is able to well address
the problem of background clutter. With the help of these two
strategies above, the MJDL is able to handle the problem of
background.

2) Occlusion: Fig. 8 demonstrates the sampled experi-
mental results of sequences Tiger2, Joggingl, and Faceocc2,
which undergo occlusion. In Tiger2, the object not only
suffers from occlusion but also illumination variation
(e.g., #148, #221, and #349). In Joggingl, the target person is
fully occluded by the background and undergoes deformation
(e.g., #55). In Faceocc2, the face is occluded by the book
and rotates meanwhile (e.g., #491). We observe that, overall,
the proposed MJDL can well deal with the occlusion in these
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and Footballl with background clutter. Best viewed on high-resolution
display.

three videos, which is attributed to three aspects. First, the
proposed method is based on sparse representation and can
take advantage of the robustness to occlusion from it. Besides,
we use both target and background information to learn the
dictionary. Through this way, the object appearance model
based on the learned dictionary is more discriminative to
distinguish the target and the background. When occlusion
occurs, our discriminative appearance model is able to utilize
the unoccluded information to determine the tracked target
from the candidate set. Second, we use both reconstruction
error and classification to improve the discriminative power
of the dictionary. In this paper, visual tracking is not only
viewed as a reconstruction problem but also a binary classi-
fication task. The dictionary is learned by minimizing both
the reconstruction error and classification error and more
discriminative. Therefore, the object appearance model based
on this dictionary is more discriminative to locate the object
even in the presence of occlusion. Third, multiple different
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features of the target are exploited and combined in a joint
way. Certain one single feature may be sensitive to occlusion,
however, multiple feature combination can make the appear-
ance model much more robust and discriminative, and help our
tracker better resist occlusion. Besides, the update mechanism
also helps our tracker improve the robustness to occlusion.
Each tracking result will be evaluated and determined whether
or not being added into the update set according to its
reconstruction error and classification error. By this means,
we can avoid updating background into an object appearance
model.

3) Illumination Variation: Fig. 9 shows the sampled exper-
imental results of sequences David, Singerl, and CarDark
with drastic illumination. In these sequences, the object
suffers from not only illumination but also deforma-
tion, scale variation, and background clutter. The VTS,
CXT, LSK, and Struck trackers drift gradually. Although
the TLD, VTD, and CSK trackers performance well in
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David and CarDark, they lose the target when the pose
change and scale variation accompany the illumination vari-
ation in Singerl. The SCM, ALSA, and our MJDL are
able to accurately track the object throughout the entire

sequences.
4) Other Challenges: Fig. 10 shows the sampled experi-

mental results where many other challenges occur in these
sequences, such as in-plane rotation, out-of-plane rotation,
scale variation, motion blur, and so on. In Boy and Jumping
sequences, the object jumps regularly, causing motion blur
and scale variation in the face (e.g., #124 and #391 in Boy
sequence and #108, #194, and #313 in Jumping sequence),
making it hard to track. Our MJDL performs well in this
sequence because of the power of multiple feature fusion.
The target in the Dudek sequence suffers from occlusion,
rotation, and scale variation (e.g., #601 and #752), our MJDL
works well due to the discriminative power of the appearance
model.
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Fig. 10. Qualitative results of ten trackers over sequences Boy, Jumping, and
Dudek with other challenges. Best viewed on high-resolution display.

D. Analysis of MJDL

In order to verify the effectiveness of MTL, we develop a
tracker by directly concatenating multiple features (CMF) of
the target without MTL. The quantitative results are shown
in Fig. 11.

From Fig. 11, we can see that the MJDL favorably performs
because we exploit multiple features of the target and learn
the underlying relationship between these different features
for object appearance modeling within the MTL framework.
Through this way, different features can exert different powers
for different cases within the MTL framework, and thus, the
object appearance model based on these features is more dis-
criminative and robust to appearance changes. On the contrary,
the CMF cannot take full advantages of multiple features
of the target because each feature has the same importance in
the concatenating feature. As we previously put it, however,
different features should have different weights in dealing
with different situations. Although the CMF can still obtain
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a dictionary using the learning method adopted in this paper,
its discriminative power has been significantly undermined.

VI. CONCLUSION

In this paper, we exploit multiple features of the object
for modeling its appearance and propose an efficient tracking
algorithm based on MJDL. This method extracts K different
features for each sample and can obtain K different linear
sparse representations. Each linear representation can learn
a dictionary. We adopt a joint learning way to combine
the K linear sparse representations, which provide additional
useful information to the classification problem, since different
tasks may favor different sparse representations, yet the joint
sparsity may enforce the robustness in coefficient estimation,
which in return improves both the reconstructive and discrim-
inative power of the learned dictionaries. After obtaining the
dictionaries, the quality of each tracking candidate is measured
based on a joint linear representation. Extensive evaluation on
a large benchmark data set demonstrates that the proposed
tracking algorithm achieves favorable results against some
state-of-the-art methods.
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